3.2.54 \(\int \frac {\sec ^3(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx\) [154]

Optimal. Leaf size=336 \[ -\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}-\frac {7\ 3^{3/4} F\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{10 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \]

[Out]

-9/10*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/3)+3/5*(a+a*sec(d*x+c))^(2/3)*tan(d*x+c)/a/d-7/20*3^(3/4)*((2^(1/3)-(1+
sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)-(1+sec(d*x+c))^(
1/3)*(1-3^(1/2)))*(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))*EllipticF((1-(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(
1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(2^(1/3)-(1+sec(d*x+c))^
(1/3))*((2^(2/3)+2^(1/3)*(1+sec(d*x+c))^(1/3)+(1+sec(d*x+c))^(2/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))
^2)^(1/2)*tan(d*x+c)*2^(2/3)/d/(1-sec(d*x+c))/(a+a*sec(d*x+c))^(1/3)/(-(1+sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*
x+c))^(1/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 336, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3885, 4086, 3913, 3912, 65, 231} \begin {gather*} -\frac {7\ 3^{3/4} \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} F\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{10 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a}}+\frac {3 \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{5 a d}-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

(-9*Tan[c + d*x])/(10*d*(a + a*Sec[c + d*x])^(1/3)) + (3*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(5*a*d) - (7
*3^(3/4)*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec
[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(2^(1/3) - (1 + Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c +
 d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(
10*2^(1/3)*d*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(1/3)*Sqrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Se
c[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2)])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 3885

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*
(b*(m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx &=\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}+\frac {3 \int \frac {\sec (c+d x) \left (\frac {2 a}{3}-a \sec (c+d x)\right )}{\sqrt [3]{a+a \sec (c+d x)}} \, dx}{5 a}\\ &=-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}+\frac {7}{10} \int \frac {\sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx\\ &=-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}+\frac {\left (7 \sqrt [3]{1+\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt [3]{1+\sec (c+d x)}} \, dx}{10 \sqrt [3]{a+a \sec (c+d x)}}\\ &=-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}-\frac {(7 \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{10 d \sqrt {1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}\\ &=-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}-\frac {(21 \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{5 d \sqrt {1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}\\ &=-\frac {9 \tan (c+d x)}{10 d \sqrt [3]{a+a \sec (c+d x)}}+\frac {3 (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{5 a d}-\frac {7\ 3^{3/4} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{10 \sqrt [3]{2} d (1-\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.21, size = 95, normalized size = 0.28 \begin {gather*} \frac {\left (7 \sqrt [6]{2} \, _2F_1\left (\frac {1}{2},\frac {5}{6};\frac {3}{2};\frac {1}{2} (1-\sec (c+d x))\right )+3 \sqrt [6]{1+\sec (c+d x)} (-1+2 \sec (c+d x))\right ) \tan (c+d x)}{10 d \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

((7*2^(1/6)*Hypergeometric2F1[1/2, 5/6, 3/2, (1 - Sec[c + d*x])/2] + 3*(1 + Sec[c + d*x])^(1/6)*(-1 + 2*Sec[c
+ d*x]))*Tan[c + d*x])/(10*d*(1 + Sec[c + d*x])^(1/6)*(a*(1 + Sec[c + d*x]))^(1/3))

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\sec ^{3}\left (d x +c \right )}{\left (a +a \sec \left (d x +c \right )\right )^{\frac {1}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^(1/3),x)

[Out]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{3}{\left (c + d x \right )}}{\sqrt [3]{a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*sec(d*x+c))**(1/3),x)

[Out]

Integral(sec(c + d*x)**3/(a*(sec(c + d*x) + 1))**(1/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(1/3)),x)

[Out]

int(1/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(1/3)), x)

________________________________________________________________________________________